

EAB

DISTRICT LEADERSHIP FORUM

Closing the Math Proficiency Gap

How Districts Can Align Instruction,
Intervention, and Teacher Expertise

Table of Contents

SECTION 1

Examining the Decline in Foundational Math Skills 5

- Why Math Readiness Matters for Districts
- A Closer Look at the Nation's Math Decline

SECTION 2

The Instructional Mismatches Behind Math Learning Gaps 9

- Rethinking the 'Math Wars'
- The Evidence Gap in Math Instruction
- Cognitive Limits Shape How Students Learn Math

SECTION 3

Three Keys to Accelerating Math Success 15

- Understand the Most Efficient Path to Skill Mastery
- Hardwire Intervention for Skill Recovery
- Build Teacher Expertise to Strengthen Instruction
- Case Study: The Kansas Math Project

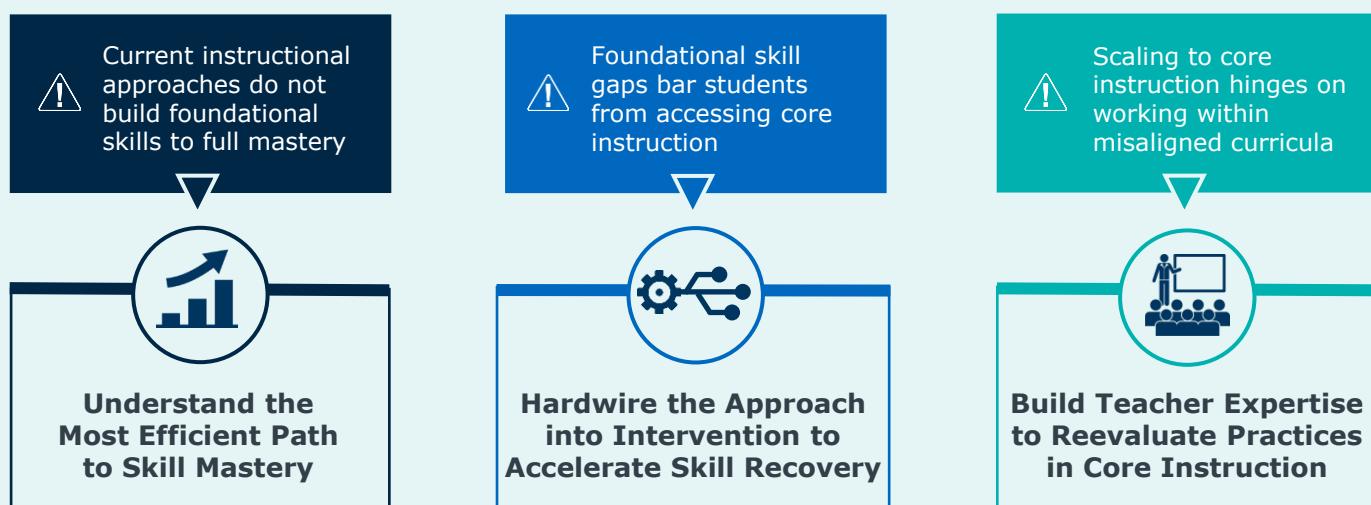
SECTION 4

Additional Resources 24

- EAB Series Spotlight: The Math Leadership Lab
- Introducing the District Leadership Forum

Executive Summary

Why Math Proficiency Matters Today


Math achievement has declined or stagnated in many districts, and leaders are struggling to keep more students from falling behind. National data show widening gaps between high- and low-performing students, and interviews with more than 100 district leaders, staff, and teachers confirm that increasing numbers of students are entering each grade without the foundational skills, fluency, and confidence needed to access grade-level math. These trends are not isolated; they reflect system-wide challenges that hinder graduation readiness, postsecondary success, and long-term economic and health outcomes. When students fall behind in math, the effects are compounded quickly, shaping both students' academic trajectory and their broader readiness for adulthood.

In This Report

This paper draws on national research, interviews with district leaders, math directors, instructional experts, school-based educators, and an extensive review of the math education evidence base. Together, these sources offer a comprehensive view of the factors contributing to unfinished learning and the practices that show promise for accelerating student progress.

Three Keys to Accelerating Math Success

This research points to three core challenges—and three corresponding solutions—that together outline the keys to accelerating math success.

Examining the Decline in Foundational Math Skills

SECTION

- Why Math Readiness Matters for Districts
- A Closer Look at the Nation's Math Decline

1

► Why Math Readiness Matters for Districts

When most people think of math, they picture equations, test scores, and preparation for STEM careers. Yet math proficiency tells us something much deeper about students' futures. It reflects whether they are developing the reasoning, persistence, and problem-solving skills that will shape their choices well into adulthood. Decades of research confirm that students' performance in math predicts a wide range of life outcomes, from graduating high school and completing college to earning higher incomes and making sound health decisions.

Math Achievement Strongly Predicts...

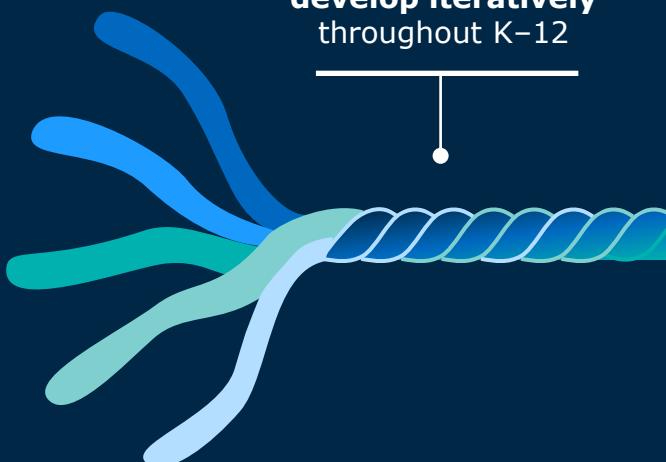
Math readiness is not a niche issue reserved for advanced learners but a foundational equity issue that influences every student's trajectory. For superintendents, low math readiness signals widening equity gaps, growing intervention demands, and students arriving at later grades without the skills required for graduation and postsecondary success. These are system-wide challenges that no school or classroom can address alone. Improving math proficiency strengthens college and career readiness and contributes to the broader economic and social well-being of entire communities.

Sources: Balfanz, et al., *Preventing Student Disengagement and Keeping Students on the Graduation Path in Urban Middle-Grades Schools: Early Identification and Effective Interventions*, 2007; Lee, *College for all: Gaps between desirable and actual P-12 math achievement trajectories for college readiness*, 2012; Reyna, et al., *How Numeracy Influences Risk Comprehension and Medical Decision Making*, 2010; James, *The Surprising Impact of High School Math on Job Market Outcomes*, 2013.

► A Closer Look at the Nation's Math Decline

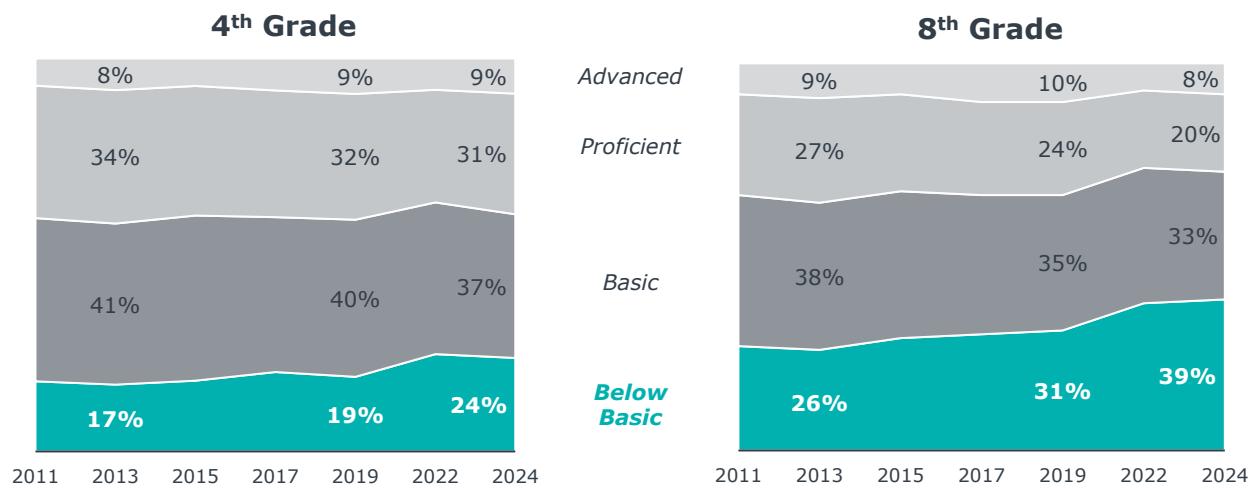
The national picture of math achievement has grown increasingly concerning. Across grade levels, performance has stalled, and the distribution of achievement has shifted in ways that expose deeper structural issues in how students learn math.

What Does It Mean to Be "Proficient" in Math?


Researchers have long agreed that math proficiency is multidimensional. The National Research Council's landmark 2001 report *Adding It Up* defines five interwoven strands that together describe what it means for students to be mathematically proficient. These strands remain the foundation for modern state standards, including the Common Core.

5 Strands of Math Proficiency

National Research Council, *Adding It Up* (2001)


- **Conceptual Understanding:** Grasp of how and why math ideas, schemas, and operations are important
- **Procedural Fluency:** Skill in carrying out procedures flexibly, accurately, and efficiently
- **Problem-Solving:** Ability to formulate, represent, and solve mathematical problems
- **Adaptive Reasoning:** Capacity for reflection, explanation, and justification
- **Productive Disposition:** Inclination to see math as sensible, useful, and worthwhile; self-efficacy

All strands **reinforce each other and develop iteratively** throughout K-12

Too many districts are stuck 'below basic'

Trend in NAEP Math Achievement-Level Results

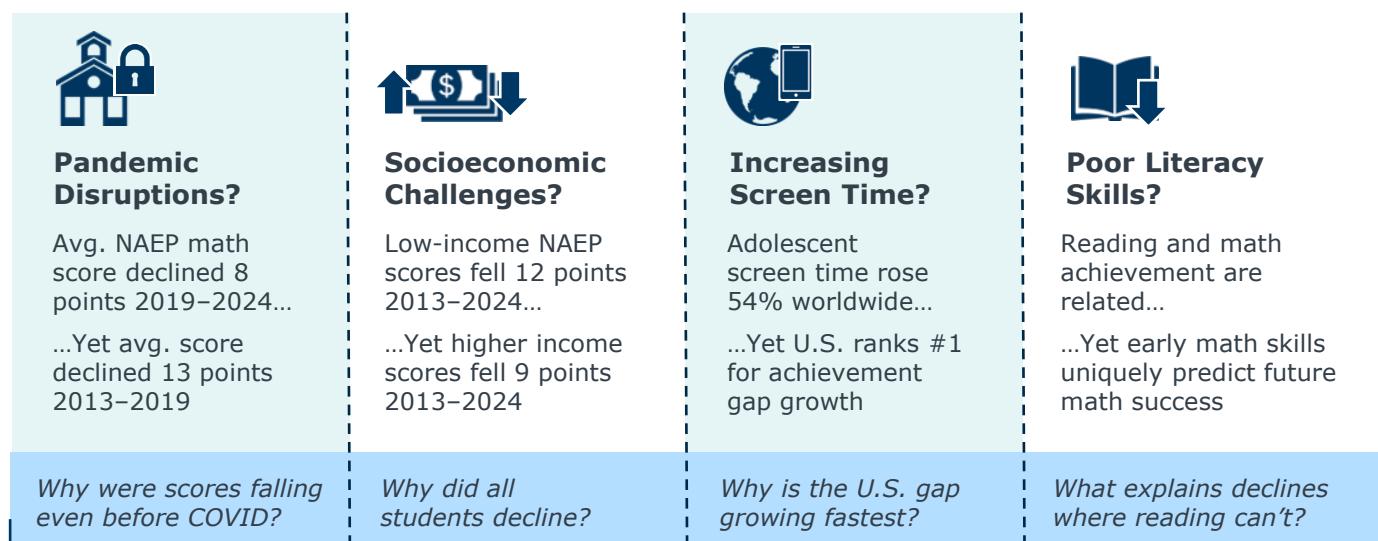
Students who once hovered just below proficiency are now joining the ranks of those well below grade level, suggesting that intervention systems are not catching struggling learners early enough. Meanwhile, top performers have remained relatively stable, which indicates that the declines cannot be explained solely by pandemic disruptions or changes in student motivation. Instead, they reflect instructional conditions that disproportionately affect students who are already behind.

District leaders describe seeing these trends in their own schools too. Cohorts are entering middle and high school without the basic skills and understanding needed to learn more advanced math. This creates a widening divide between students who can build on prior learning and those who must continually revisit earlier skills.

Sources: National Center for Education Statistics, NAEP Report Card: Mathematics, 2024; EAB interviews and analysis.

The Instructional Mismatches Behind Math Learning Gaps

SECTION


2

- Rethinking the 'Math Wars'
- The Evidence Gap in Math Instruction
- Cognitive Limits Shape How Students Learn Math

► Rethinking the 'Math Wars'

Educators often point to pandemic disruptions, socioeconomic barriers, increased screen time, or weak literacy skills as explanations for declining math performance. Each of these factors has played a role, but they do not fully account for the scale or duration of the declines. Research shows that roughly 93% of students are capable of learning math without intensive intervention, yet only 61% demonstrate proficiency by eighth grade. This gap suggests that the core issue is not student ability but something more fundamental about how students are learning math. To understand why so many students struggle, we must examine the instructional choices shaping their early learning experiences.

Why Are More Students Struggling in Math?

District Math Instruction?

~93% of students are capable of learning math without intensive support¹

...Yet only 61% of students are proficient by 8th grade

1) [Dyscalculia](#) affects 3–7% of individuals across all ages, causing persistent difficulty with arithmetic that significantly impairs calculations.

Sources: National Center for Education Statistics, [NAEP Report Card: Mathematics – Performance by Student Group](#), 2024; Madigan, et al., [Assessment of Changes in Child and Adolescent Screen Time During the COVID-19 Pandemic](#), 2022; Malkus, [Testing Theories of Why](#), 2025; EAB interviews and analysis.

What's the Best Way to Teach Math?

Educators have long held differing views on the most effective ways to teach math. Commonly referred to as the 'math wars,' this debate reflects competing beliefs about how students build understanding. Although often framed as an either-or choice, it is not a disagreement about *what* students should learn but *how* instruction should support that learning.

One Way to Interpret the Spectrum of Math Teaching Approaches

Teacher-Led Instruction

This approach uses a clear instructional sequence, with teachers modeling new skills and guiding students through practice. Advocates see it as an efficient way to build mastery, since teachers can break concepts into manageable steps, model procedures, and provide guided practice. Although sometimes mistaken for passive lecturing, strong teacher-led instruction is active and responsive, with frequent checks for understanding, opportunities for student participation, and immediate feedback.

Student-Led Instruction

This approach begins with a task or problem rather than a direct explanation, giving students space to explore ideas and share their reasoning. Supporters view it as a way to deepen conceptual understanding and strengthen habits such as persistence, flexible thinking, and problem-solving. Because students will encounter mathematical situations that cannot be directly taught, advocates emphasize helping them develop strategies for approaching unfamiliar tasks independently.

The Right Place and the Right Time

The challenge is not choosing one approach over the other but understanding *when* each is most effective. Teacher-led instruction is most effective when students are first learning a skill, while student-led instruction becomes more effective once students have mastered the skill and can apply it flexibly. The core issue is not the existence of different instructional methods but the absence of a system that helps teachers match the approach to a student's stage of learning.

Sources: Barshay, *How a Debate Over the Science of Math Could Reignite the Math Wars*, 2023; EAB interviews and analysis.

The Evidence Gap in Math Instruction

Many Common Approaches Fail to Improve Outcomes

Districts have no shortage of strategies, programs, and instructional philosophies aimed at improving math performance. Yet relatively few of these approaches are supported by strong research. When EAB analyzed more than 300 pieces of math education literature—much of which district leaders cited in interviews as the basis for their current instructional approaches and programs—only a small share met the standards needed to guide district decision-making. This disconnect between what districts rely on and what the evidence supports helps explain why many well-intentioned efforts yield limited student improvement.

EAB's Criteria for Evaluating Effective Math Instructional Approaches

- ✓ High-quality research design
- ✓ Effects on validated math achievement measures
- ✓ Teachers can feasibly use approach in real classrooms

Estimated Distribution of Literature on Math Instructional Approaches, by Characteristic

Because the evidence base is so uneven, districts frequently adopt strategies that appear innovative or practical but lack the validation needed to support widespread implementation. Many of the approaches most often cited by district leaders fall into the 'weak evidence' or 'no evidence' categories. As a result, districts often invest significant time and resources into practices that do little to address the underlying causes of math difficulties. As a result, district efforts to improve math outcomes fail to produce meaningful initiatives even when well executed, because the approaches themselves are poorly designed to deliver the outcomes students need.

Sources: National Center for Intensive Intervention, *Academic Intervention Rating Rubric*, 2022; Kilpatrick, et al., *Adding It Up*, 2001; Hansford & Schechter, *Evidence Framework*, 2022; Sparks, *Picking 'Evidence-Based' Programs: 5 Mistakes for Educators to Avoid*, 2024; EAB interviews and analysis.

► Cognitive Limits Shape How Students Learn Math

Understanding why students struggle in math requires looking closely at how they process new information. Cognitive load theory helps explain why some instructional approaches accelerate learning while others stall it. These constraints also reveal why students may appear proficient on paper yet remain unable to apply skills in new or complex contexts.

Cognitive Load Theory

Explains that all students' learning is constrained by limited working memory, requiring instructional design that builds new skills systematically without introducing too many pieces of new information.

New, Unlearned Skills Take Up Limited Working Memory

4–7

Max # of items humans can hold in working memory. Students cannot increase working memory.¹

Long-term memory is unlimited; recalling items from long-term memory is effortless.

A student must hold each piece of *unlearned* info in their working memory as a separate item.

As students learn, they can chunk learned items into a single item, freeing up working memory:

- Expert: $3+4=7 \rightarrow 1$ item
- Novice: $3+4=7 \rightarrow 3-5$ items

Working memory is limited. Most learners can hold only four to seven new items in mind at a time, which means even small increases in cognitive demand can overwhelm their learning capacity. When students first encounter a skill, each step of a procedure occupies part of this limited space. If a lesson introduces too much information at once or assumes command of skills students haven't mastered, their working memory becomes overloaded and learning breaks down.

Sources: Cowan, *The magical number 4 in short-term memory: A reconsideration of mental storage capacity*, 2001; Doabler & Fien, *Explicit Mathematics Instruction: What Teachers Can Do for Teaching Students With Mathematics Difficulties*, 2013; Kirschner, et al., *Why Minimal Guidance During Instruction Does Not Work*, 2006; Gupta & Zheng, *Cognitive Load in Solving Mathematics Problems: Validating the Role of Motivation and the Interaction Among Prior Knowledge, Worked Examples, and Task Difficulty*, 2020.

¹) Working load for young children (~K-3) tends to be lower.

'Understanding' Is Not Enough to Evaluate Mastery

To learn more complex material, students must be able to retrieve facts and procedures automatically, so their working memory remains free for learning new skills and concepts and applying learned ones. This transfer to long-term memory is best measured through a combination of speed and accuracy, not accuracy or understanding alone.

For this reason, educators must ensure that students can perform math skills quickly, accurately, and effortlessly. When students cannot do so, it signals that they are still relying heavily on working memory rather than automatic recall from long-term memory—an inefficiency that impedes future learning and problem-solving. This dynamic helps explain why many students appear proficient on untimed tasks but struggle when they must apply skills quickly or in multistep problems. In one study of more than 400 students, more than half of those scoring 90% or higher on a basic skills assessment had not reached the fluency benchmark needed for later success. This 'illusion of mastery' leaves students unprepared for the demands of higher-level coursework.

Many Leaders Discount Importance of Speed, Fail to Move Past Accuracy

"We focus on the kids' comprehension and thinking. I don't care how quickly they can do the calculation, because they'll have a calculator soon."

"My teachers don't assess how fast the student is, because faster isn't smarter."

Speed and Accuracy Are Twice as Predictive of Overall Math Proficiency as Accuracy Alone

2x

Factor by which 4–5th graders' speed-plus-accuracy better predicted math proficiency than accuracy alone

Speed Reflects Automatic Recall from Long-Term Memory

Manual computation, referencing tax working memory required to learn new skills and apply learned skills.

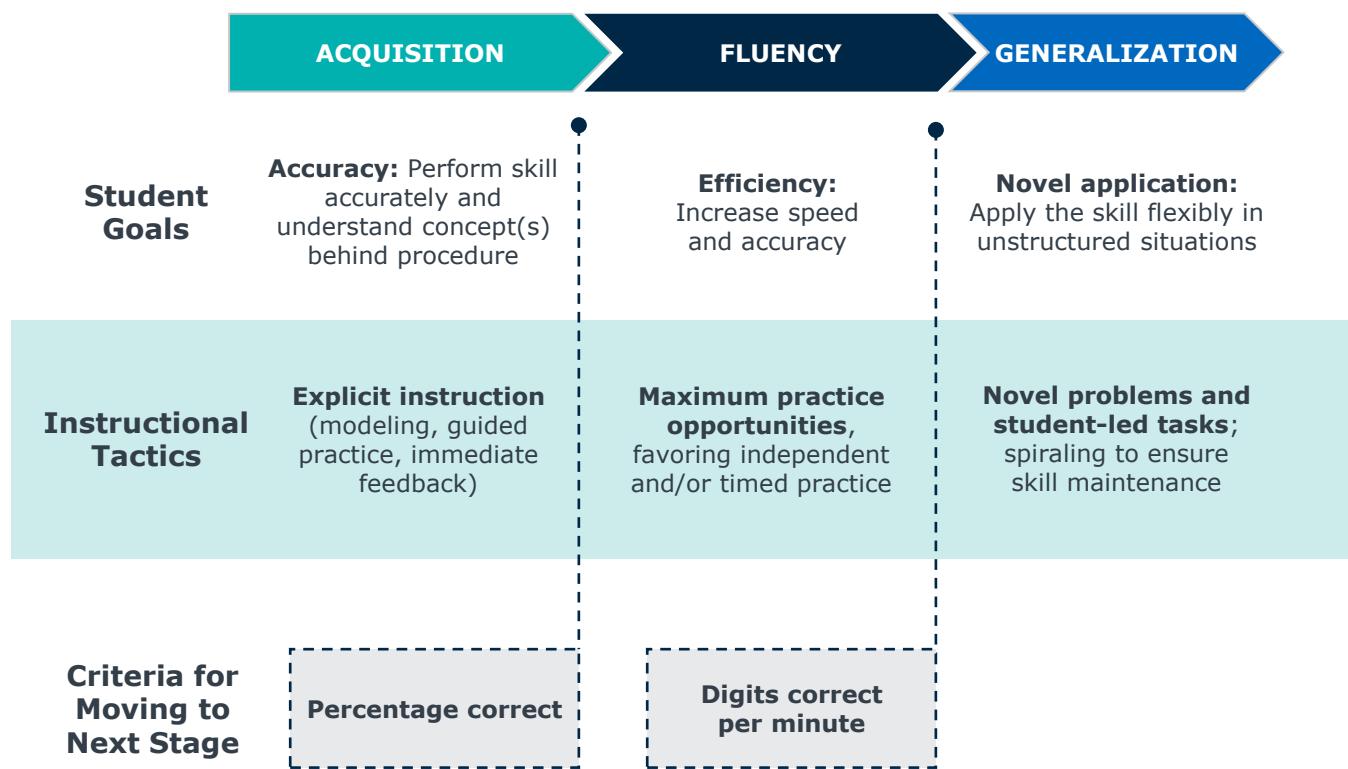
Students who rely on automatic recall of facts and procedures perform better in higher-level math than peers who rely on manual computation.

Sources: VanDerHeyden & Solomon, *Valid Outcomes for Screening and Progress Monitoring: Fluency Is Superior to Accuracy in Curriculum-Based Measurement*, 2023; Source: Burns, et al., *Assessing the Instructional Level for Mathematics: A Comparison of Methods*, 2006; Clark, et al., *Putting Students on the Path to Learning*, 2012; Parkhurst, et al., *Efficient Class-wide Remediation: Using Technology to Identify Idiosyncratic Math Facts for Additional Automaticity Drills*, 2010; Price, et al., *Why mental arithmetic counts: Brain activation during single digit arithmetic predicts high school math scores*, 2013; EAB interviews and analysis.

Three Keys to Accelerating Math Success

SECTION

3


- Understand the Most Efficient Path to Skill Mastery
- Hardwire Intervention for Skill Recovery
- Build Teacher Expertise to Strengthen Instruction

► Understand the Most Efficient Path to Skill Mastery

Align Instruction to How Students Learn

Improving math learning requires understanding how students acquire, consolidate, and apply new skills. Decades of research point to a clear, evidence-based framework for this process: the Instructional Hierarchy, which helps teachers determine which instructional tactics to use based on students' current level of mastery. This model outlines the stages learners move through on the path to mastery and helps explain why many practices feel misaligned or why students seem to 'know' a skill yet struggle to use it later.

The Instructional Hierarchy: An Empirically Validated Learning Path

The Instructional Hierarchy includes three stages. In Acquisition, students encounter a skill for the first time and need clear explanations, modeling, guided practice, and feedback. The goal at this stage is accuracy. Once students can perform a skill correctly, they enter the Fluency-Building stage, where the aim is to improve speed while maintaining high accuracy. Here, students need frequent and efficient practice so the skill is transferred to long-term memory and working memory is freed for new learning. In Generalization, students apply a skill in new or unfamiliar contexts, requiring flexibility, novel problem-solving, and long-term maintenance.

Sources: Maki, et al., *Intervening with Multiplication Fact Difficulties*, 2020; Codding, et al., *Using Data to Intensify Math Instruction*, 2023; VanDerHeyden, et al., *Randomized Evaluation of a Supplemental Grade-Wide Mathematics Intervention*, 2012; Codding, et al., *Comparing mathematics interventions*, 2007; Burns, et al., *Meta-analysis of acquisition and fluency math interventions with instructional and frustration level skills*, 2010; Codding, et al., *Meta-analysis of mathematic basic-fact fluency interventions*, 2011.

When Instruction Does Not Align to Learning Stage

The stages of the Instructional Hierarchy make clear why instructional methods must match students' readiness. When teachers introduce fluency-building or open-ended tasks too early, students may memorize procedures without understanding them or become overwhelmed by the cognitive demands. Conversely, when students remain in the acquisition stage for too long and never build automaticity, they struggle to keep pace with more complex material.

Common Missteps in Acquisition Phase

Using fluency tactics in acquisition (i.e., timed activities)

Using generalization tactics in acquisition (i.e., unstructured tasks)

Results

Rote memorization and unfinished learning

Student participation, but unfinished learning

Common Missteps in Fluency Stage

Stopping at acquisition, never reaching fluency

Results

Inefficient problem-solving and unfinished learning

These missteps are among the most common contributors to unfinished learning. Matching instructional tactics to the appropriate stage allows students to move from initial understanding to automatic recall and, ultimately, to flexible application. Without this alignment, even well-designed lessons and strong curriculum materials fall short, leaving students with skills that appear to be mastered but do not hold up under the demands of later coursework.

Source: EAB interviews and analysis.

► Hardwire Intervention for Skill Recovery

MTSS Needs System-Level Integration, Not More Tools

Most Districts Have Math MTSS Components, Especially Screeners

Trends from EAB Interviews:

Universal Screeners

80–90%

Districts have universal math screeners (e.g., MAP)

Intervention Materials

60–70%

Provide lessons, activities, or apps aimed at skill recovery

Math Intervention Block

20–30%

Protect at least 20 minutes for math intervention

But Districts Lack a System That Connects Assessment Results to Intervention Practices

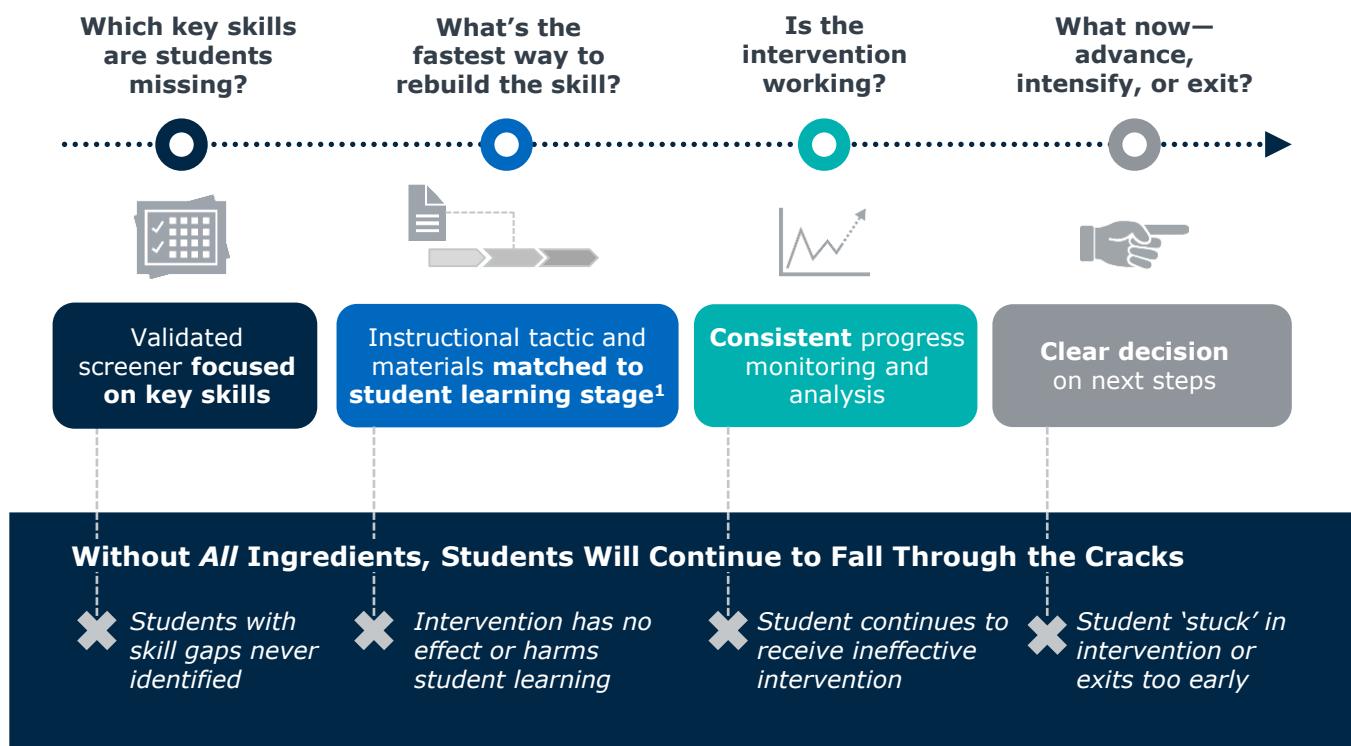
 Screener results inform tailored interventions

 Progress monitoring assessments inform intervention next steps

 Administrators ensure implementation fidelity

“

*You have to have that link to intervention; **otherwise you’re just admiring the problem.***

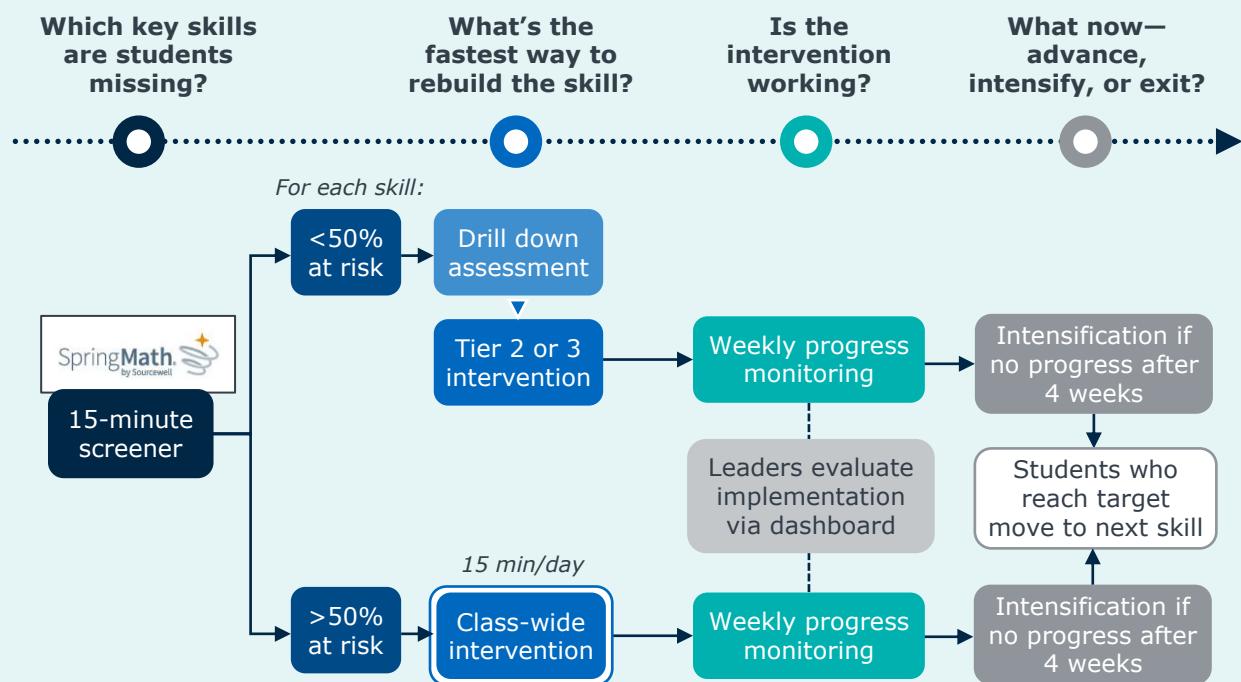

Dr. Ben Clarke,
MTSS Researcher,
University of Oregon

Even with high-quality core instruction materials, many students still need targeted support to rebuild essential skills that may have been missed. Most districts already have some mix of components of a Multi-Tiered System of Supports (MTSS)—screeners, intervention materials, and protected time—but lack a cohesive system that connects these pieces. As a result, teachers receive data identifying which students are struggling but are left without a clear, efficient process for determining what to do next. This disconnect leads to inconsistent decisions, uneven implementation, and students who remain ‘stuck’ despite receiving additional support.

Sources: Schwartz, Schools Prioritize Reading Intervention. But What About Math?, 2024 EAB interviews and analysis.

Codify the Four Key Intervention Decisions

Effective intervention hinges on four precise decisions: identifying which skills students are missing, determining the fastest path to rebuild them, monitoring progress, and choosing appropriate next steps after instruction. In practice, these decisions are difficult for teachers to make consistently without strong tools, clear guidance, or adequate time. When districts rely on individual judgment or disconnected materials, intervention varies widely across classrooms, making it hard to scale improvement or track progress. Codifying this decision process for teachers ensures that students receive the right type of support at the right time and that teachers can act quickly and confidently.



Source: EAB interviews and analysis.

Case Study: Coxsackie-Athens Central School District

A District Example of Hardwired Intervention in Practice

The experience of Coxsackie-Athens Central School District (NY) illustrates the potential of hardwiring systematic intervention into school practices. Facing persistent proficiency rates of 50–60%, leaders adopted SpringMath (now SpringMath Accelerate), an evidence-based system that uses the Instructional Hierarchy to guide the principles of the Instructional Hierarchy into routine intervention decisions. The system identifies high-leverage skills, determines each student's learning stage, generates targeted plans, and provides weekly progress-monitoring tools to guide next steps.

Within one year, proficiency increased meaningfully in grades four through six, particularly in classrooms that implemented the system consistently. Teachers reported greater confidence in their instructional decisions, clearer insight into student progress, and more time to focus on teaching rather than diagnosing and planning. The district's experience demonstrates that when intervention decisions are streamlined, standardized, and guided by evidence, skill recovery becomes both feasible and scalable. Hardwiring intervention does not replace teacher expertise; it gives teachers the structures they need to act quickly and effectively.

As we saw visible student growth and skill mastery, there was no denying the value.
SpringMath demonstrated that our kids can do the work.

Dr. Randy Squier. Superintendent

Sources: Sourcewell, Data-driven success: How strategic implementation and collaboration boosted math proficiency in Coxsackie-Athens Central School District, 2025; EAB interviews and analysis.

► Build Teacher Expertise to Strengthen Instruction

Capacity and Curriculum Matter as Much as Intervention Framework

A core challenge lies in curriculum design. Research shows that many widely used programs emphasize generalization tasks—those meant for independent application—while underusing the explicit instruction and structured practice required in the acquisition and fluency stages. In one study, only 17% of second-grade lessons and 8% of fourth-grade lessons included explicit, systematic instruction, and opportunities for adequate practice were even more limited. District leaders echoed these findings, noting that current materials often provide insufficient practice or clear guidance for teaching foundational skills. As a result, teachers supplement heavily or create their own materials, adding inconsistency and workload to already demanding roles.

Most Core Curricula Do Not Support Teaching with the Instructional Hierarchy

Findings from Doabler et al., 2012:

Explicit, Systematic Instruction

17% of 2nd grade lessons **8%** of 4th grade lessons

Adequate Practice to Master Skills

25% of 2nd grade lessons **0%** of 4th grade lessons

“

Textbooks were missing consistent opportunities for explicit and systematic instruction. A potential result of missing this principle in a core math textbook is providing math instruction that is confusing for students.”

Doabler et al., 2012

Shifting Instruction Without Curriculum Puts Undue Burden on Teachers

Requiring instructional shifts without aligned resources means teachers must:

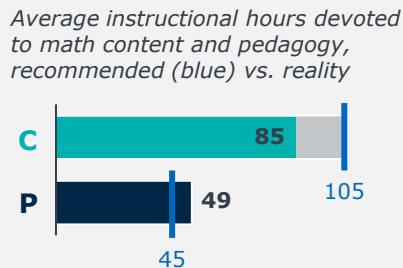
Filter through competing advice in core resource

Use materials in contrast to how they're designed

Find and use other materials to fill gaps in core program

Sources: Bryant, et al., *Preventing Difficulties in the Primary Grades: The Critical Features of Instruction in Textbooks as Part of the Equation*, 2008; Doabler, et al., *Evaluating Three Elementary Mathematics Programs for Presence of Eight Research-Based Instructional Design Principles*, 2012; EAB interviews and analysis.

Teacher Preparation Falls Short of Instructional Needs


Teacher preparation programs often leave new educators under-equipped to address students' math needs. Only 15% of undergraduate programs provide sufficient coursework in math content, despite decades of evidence showing that deep content knowledge is essential for effective instruction. Many programs also expose teachers to conflicting pedagogical philosophies, offering little guidance on how to align instructional tactics to students' learning stages.

For current teachers, most professional development can be similarly incomplete, focusing narrowly on curriculum implementation or surface-level strategies rather than the cognitive and instructional principles that drive student learning.

Math Content Training Often Overlooked

15%

of undergraduate programs adequately cover all recommended **math content** credit hours

	Content Knowledge	Pedagogical Content Knowledge
Math	Understanding that $1+2/3$ is the same as $5/3$ and how to prove it	Anticipating that students might confuse the numerator and denominator when converting fractions
Reading (for reference)	Knowing what phonemes are (units of sound that make up words)	Knowing ways to improve student phonemic awareness for literacy (the ability to notice how sounds in words work)

Teachers Exposed to Conflicting Pedagogical Approaches

51%

of math education professors believe students should **master basic math operations before tackling complex problems**

54%

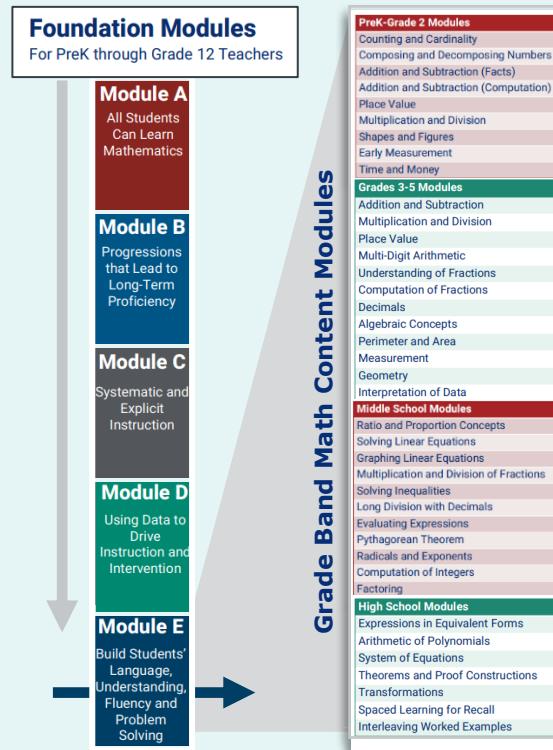
of math education professors believe it's important to **model a math activity or problem** before assigning practice

53%

of math education professors believe **it's important to be fluent in math facts, but not essential**

Case Study: The Kansas Math Project

A Promising Model for Building Math Expertise


The [Kansas Math Project](#) offers a [free, modular, evidence-based training program](#) that helps teachers understand how math concepts are built across grade levels, match instruction to the stages of the Instructional Hierarchy, and evaluate and adapt curriculum materials. The modules are designed for flexible use—whether in PLCs, coaching cycles, or independent study—making the program accessible for districts with limited time or capacity. Leaders who have piloted the training report that it has helped teachers interpret their existing curricula more effectively and strengthen their instructional decision-making.

State-Funded Math Training Program Fills Common Voids in Math PD

- Helps teachers match instructional tactic to student learning stage across the instructional hierarchy
- Develops a clear throughline of how math content is built across K-12
- Guides teachers in translating common math curricula formats to reflect evidence-based instructional approaches
- Free for everyone (even those not in Kansas)

"We hope that something like this can help [teachers] identify what's good within their curriculum."

- Kari Heide,
Kansas Math Project

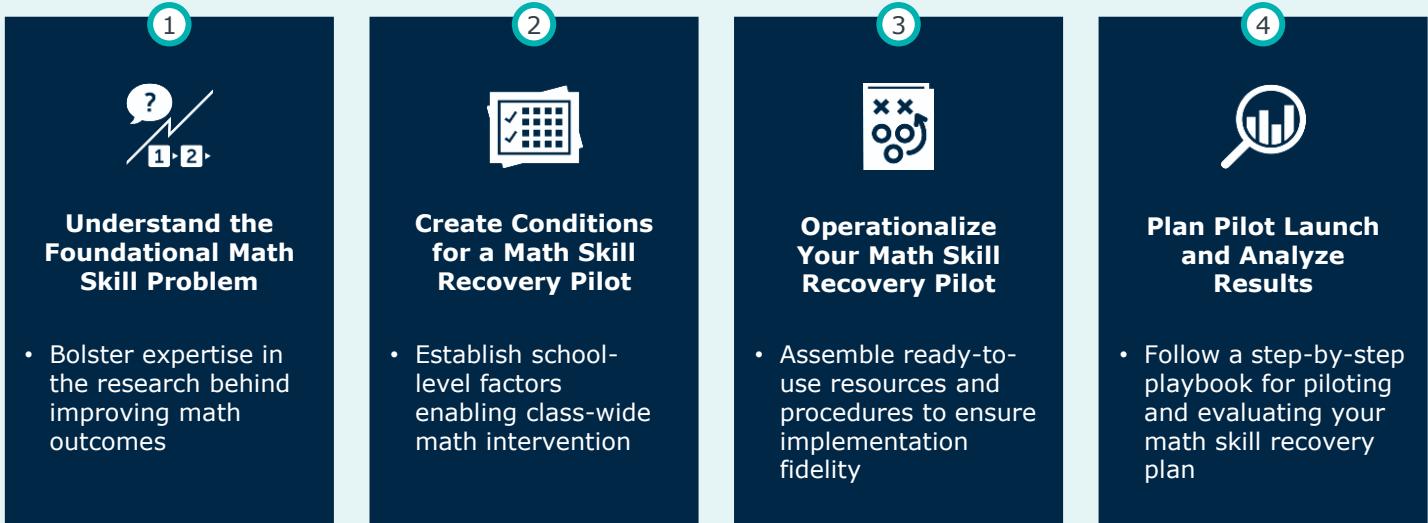
Building teacher expertise is essential not only for immediate skill recovery but also for long-term instructional improvement. When teachers understand how students learn math and have tools to evaluate and adapt curriculum resources, districts gain the internal capacity needed to sustain change and improve outcomes over time.

Sources: Kansas MTSS and Alignment Math Repository, Kansas Math Project; Korbev, [How Kansas built their own LETRS-like training for math](#), 2024; EAB interviews and analysis.

Additional Resources

SECTION

- EAB Series Spotlight: The Math Leadership Lab
- Introducing the District Leadership Forum


4

Series Spotlight: The Math Leadership Lab

Implementation Series for Accelerating Math Progress in Your District

Improving student math performance is not achieved simply by adopting a high-quality curriculum. EAB's Math Leadership Lab guides leaders through every step of building a math skill recovery protocol proven to boost student outcomes and feasible to implement at scale.

EAB's Four-Session Math Leadership Lab Experience

Collaborative Takeaways

- ✓ Complete plan for launching an evidence-based foundational skill recovery protocol
- ✓ All materials needed to build and implement your plan
- ✓ Peer network dedicated to improving student math outcomes

“

EAB's resources have been amazing. There's no way we could have done all of this alone.”

*Superintendent,
Missouri*

Introducing the District Leadership Forum

School systems nationwide are all trying to address the same challenges, but few—if any—have the resources to solve those problems alone. The District Leadership Forum serves as a shared research department for a network of more than 150 districts nationwide, finding innovative, practical solutions to current challenges. Our goal is simple: *Help school systems get further, faster, together.*

EAB Helps Partners Accelerate Progress by:

Finding practical solutions to K-12's up-at-night challenges

- Annual Forum research agenda
- Custom reports on district-specific issues
- Online library with research briefs and insight papers

Equipping leaders with essential insights and expertise

- Executive roundtables for superintendents
- On-site presentations and workshops
- Executive skill trainings

Helping each district turn research into reality and results

- Personalized implementation planning pathways
- Implementation planning cohorts, toolkits, and resources
- Unlimited access to strategic advising from EAB experts

Benefits of Partnering with EAB

Expand the capacity and effectiveness of your team

Accelerate progress on key issues

Avoid costly missteps and wasted effort

Stay ahead of the curve

Hear why superintendents love working with EAB

Project Director

Margaret Sullivan

Jake Nelson

Contributing Consultants

Meredith Hayford

Chrysanthi Vioraris

Executive Director

Olivia Rios

Legal Caveat

EAB Global, Inc. ("EAB") has made efforts to verify the accuracy of the information it provides to partners. This report relies on data obtained from many sources, however, and EAB cannot guarantee the accuracy of the information provided or any analysis based thereon. In addition, neither EAB nor any of its affiliates (each, an "EAB Organization") is in the business of giving legal, accounting, or other professional advice, and its reports should not be construed as professional advice. In particular, partners should not rely on any legal commentary in this report as a basis for action, or assume that any tactics described herein would be permitted by applicable law or appropriate for a given partner's situation. Partners are advised to consult with appropriate professionals concerning legal, tax, or accounting issues, before implementing any of these tactics. No EAB Organization or any of its respective officers, directors, employees, or agents shall be liable for any claims, liabilities, or expenses relating to (a) any errors or omissions in this report, whether caused by any EAB Organization, or any of their respective employees or agents, or sources or other third parties, (b) any recommendation by any EAB Organization, or (c) failure of partner and its employees and agents to abide by the terms set forth herein.

EAB is a registered trademark of EAB Global, Inc. in the United States and other countries. Partners are not permitted to use these trademarks, or any other trademark, product name, service name, trade name, and logo of any EAB Organization without prior written consent of EAB. Other trademarks, product names, service names, trade names, and logos used within these pages are the property of their respective holders. Use of other company trademarks, product names, service names, trade names, and logos or images of the same does not necessarily constitute (a) an endorsement by such company of an EAB Organization and its products and services, or (b) an endorsement of the company or its products or services by an EAB Organization. No EAB Organization is affiliated with any such company.

IMPORTANT: Please read the following.

EAB has prepared this report for the exclusive use of its partners. Each partner acknowledges and agrees that this report and the information contained herein (collectively, the "Report") are confidential and proprietary to EAB. By accepting delivery of this Report, each partner agrees to abide by the terms as stated herein, including the following:

1. All right, title, and interest in and to this Report is owned by an EAB Organization. Except as stated herein, no right, license, permission, or interest of any kind in this Report is intended to be given, transferred to, or acquired by a partner. Each partner is authorized to use this Report only to the extent expressly authorized herein.
2. Each partner shall not sell, license, republish, distribute, or post online or otherwise this Report, in part or in whole. Each partner shall not disseminate or permit the use of, and shall take reasonable precautions to prevent such dissemination or use of, this Report by (a) any of its employees and agents (except as stated below), or (b) any third party.
3. Each partner may make this Report available solely to those of its employees and agents who (a) are registered for the workshop or program of which this Report is a part, (b) require access to this Report in order to learn from the information described herein, and (c) agree not to disclose this Report to other employees or agents or any third party. Each partner shall use, and shall ensure that its employees and agents use, this Report for its internal use only. Each partner may make a limited number of copies, solely as adequate for use by its employees and agents in accordance with the terms herein.
4. Each partner shall not remove from this Report any confidential markings, copyright notices, and/or other similar indicia herein.
5. Each partner is responsible for any breach of its obligations as stated herein by any of its employees or agents.
6. If a partner is unwilling to abide by any of the foregoing obligations, then such partner shall promptly return this Report and all copies thereof to EAB.

202-747-1000 | eab.com

 @eab @eab_ @WeAreEAB @eab.life

ABOUT EAB

At EAB, our mission is to make education smarter and our communities stronger. We work with thousands of institutions to drive transformative change through data-driven insights and best-in-class capabilities. From kindergarten to college to career, EAB partners with leaders and practitioners to accelerate progress and drive results across five major areas: enrollment, student success, institutional strategy, data analytics, and diversity, equity, and inclusion (DEI). We work with each partner differently, tailoring our portfolio of research, technology, and marketing and enrollment solutions to meet the unique needs of every leadership team, as well as the students and employees they serve. Learn more at eab.com.